
Journal of Statistical Physics, Vol. 29, No. 1, 1982 

Symmetry Properties of Nonlinear Barrier Coefficients 
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This paper concerns the properties of a symmetric barrier between two reser- 
voirs. The barrier can pass K conserved quantities. The current of the ith 
quantity is assumed to satisfy the nonlinear relation 

where the Afli's are the affinity differences across the barrier and A~ and B6k t 
are functions of the average affinities of the reserviors. It is shown that B~k t is 
symmetric in all indices. 
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1. BASIC DEFINIT IONS 

In this pape r  we shall  consider  a system composed  of a symmetr ic  bar r ie r  
(such as a pnp sandwich)  f lanked  by  two large ident ica l  reservoirs.  W e  

assume that  the bar r ie r  can  pass K conserved  quanti t ies,  A~ . . . . .  A K, 
which we denote  collect ively as A. Typ ica l ly  A 1 is in ternal  energy while 
A 2 . . . . .  A K are the n u m b e r  of K -  1 separa te ly  conserved par t ic le  types. 
By mak ing  the reservoirs large enough we can  neglect  the a m o u n t  of A 
con ta ined  in the barr ier .  W e  assume that  the system is i sola ted and  
conta ins  a total  a m o u n t  of A given by  A = 2A ~ At  equi l ibr ium A R =  A L 
= A ~ where A R and  A L are  the amount s  of A in the r ight  and  left resevoirs, 
respectively.  As t h e r m o d y n a m i c  parameters ,  for def ining the state of the 
system we shall  use the 2 K  var iables  A ~ = �89 (A R + A L) and  a = �89 (A R - AL). 

Clear ly  A R = A ~  a ,  A L =  A ~  a ,  and  do~/dt gives the rate  of f low 
through the bar r ie r  of the K conserved quanti t ies.  The  total  en t ropy  of the 
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system is given by 

S(A~ = F(A ~ + a)  + F(A ~ - a)  1) 

where F(A) is the entropy function of one reservior. 
The K affinities, 

0F(A) 
fli(A) - 0A i 

are thermodynamically conjugate to the extensive variable A i. 
We shall assume that F(A) is analytic at A ~ Using the summanon 

convention and the notation F, ~ = [02F(A)/OAiOAj]A o, etc., we can write the 
affinity differences and average affinities across the barrier as expansions in 

Afli(A~ =--fli(A~ + a)  - fli(A ~  a)  

= 2F/~a)+ . . .  (2) 

/~(A~ --�89 fli(A 0 + oz) + �89 fli(A ~ - o~) 

= Fi ~ + �89176 + " ' '  (3) 

In Eq. (2) and (3) we have included terms through second order in a. A 
quadratic reservoir is one for which F~ = 0. For a quadratic reservoir, 
constant A ~ implies constant /3 through third order in a. For such a 
reservoir 

S(A ~ a)  = 2F  ~ + F~aia j (4) 

The reservoirs will be assumed to have internal conductivities for all 
the quantities Aj which are much larger than the corresponding conductivi- 
ties of the barrier. They can then be assumed to be internally at equilib- 
rium. The temporary state of the system is thus completely characterized by 
the values of A ~ and a. We also assume that the set of thermodynamic 
parameters,/3 and A~, is sufficient in the sense that the left-to-right current 
through the barrier is determined by their instantaneous value: 

dai 
dt - Ji( ~' A[3 ) (5) 

Although the relationship between the sets of variables (A ~ a) and (/~, A]3) 
is determined by the entropy function of the reservoirs, we shall assume 
that the function Ji(/3, A/3) is a property of the barrier structure alone and 
would be unchanged if the two reservoirs were replaced by another pair of 
matched reservoirs. 

The barrier coefficients are defined by expanding Ji as a power series 
in the affinity differences. We include only the first nonlinear term. The 
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extension of the analysis to include further terms is straightforward, how- 
ever, series expansions are usually useful only if succeeding terms are of 
decreasing significance. Since third-order coefficients would already be 
difficult to measure the advantages of including further terms in the 
analysis are probably not worth the added complication. Thus, using the 
summation convention, we assume that Ji is given by 

Ji = Aij( ~ )Afij + Bijk/( ~ )AfljAfikAfi~ (6) 

That Ji is an odd function of AI8 follows from the reflection symmetry Of 
the system. We shall show that both A 0 and B~jkt are completely symmetric 
in their indices. 

2, M I C R O S C O P I C  ANALYSIS 

We shall assume that the system satisfies classical Hamiltonian dynam- 
ics. (A quantum version of the following analysis has been constructed and 
leads to the same conclusions.) The state of the system is represented by a 
point z in a 2N-dimensional phase space, F, in which we use coordinates 
(ZI . . . .  , Z 2 N )  ~--" (ql  . . . . .  qN, ]71  . . . .  ' PN) = (q, P). Within F we define two 
point transformations: (1) the time evolution operator T,z o = z( t ,  Zo), where 
z( t ,  Zo) is the solution of Hamilton's equations with initial value z 0, and (2) 
the time reversal operator Rz = ( q , - p ) .  A function f ( z )  is called time 
reversible if f ( R z ) = f ( z )  and time invariant if f ( T t z  ) = f ( z )  for all t. The 
Hamiltonian is assumed to have both properties. This implies that TtRTtz  
= Rz or, equivalently that 

RT, = T _ , R  (7) 

We consider a microcanonical ensemble with density O(z)= 6 ( H ( z )  - E )  
and note that 0 is both time invariant and time reversible. We also consider 
K observables al(z ) . . . .  , aK(z ) which we collectively denote as a(z). For 
any t the K by K correlation matrix C(t) is defined as 

C = fra(z)a(T,z)p(z) d2U: (8) 

Introducing into Eq. (8) the transformation of variables z ' =  RT~z and 
using the facts that O(z') = p(z), d2Nz ' = dZNz, and RT, = T tR we write 
C(t) as 

C = f r a ( R r t z ' ) a ( R z ' ) p ( z  ') d2Nz ' (9) 

We shall now assume that each of the observables is even under time 
reversal: 

ai(Rz  ) = ai(z ) (10) 
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Using Eq. (10) in Eq. (9) gives the result 

c~(t)  = cj,(t) (11) 

The ensemble expectation values of the observables a(z) yield K thermody- 
namic parameters which we interpret as a point a in a K-dimensional 
parameter space y: 

~x = fra(z)#(z) d2Nz (12) 

In ~, we define an ensemble entropy function S(a )  and a time evolution 
operator T t by the equations 

e s{"~ = ; 8 ( a ( z )  - a)p(z) d2Nz (13) 

and 

= s  (a(:) - ,x>(z)  (14) 

a K-dimensional Dirac delta function. Without loss of where 6(e~) is 
generality we may assume that the maximum of S0x) (i.e., the equilibrium 
state) occurs at ~ = 0. With these definitions we obtain the identity 

= s  ae s("~ dK~ (15) 

Equations (11) and (15), when combined, give the result 

s  - (T,a)a]e s(~') dK~= 0 (16) 

It should be noted that the only assumptions made in deriving Eq. (16) 
were that H(z) and a(z) are time reversible. 

We define K affinities, conjugate to the e~j by 

os( , r  
~/~i - a~, (17) 

(They are called Afl~ in order to facilitate comparison with the definitions of 
Section 1.) That Tt~ is a function of a is clear from Eq. (14). We shall now 
assume, for t much larger than a microscopic collision time but much less 
than the macroscopic relaxation time of the system, that T t a - a  is 
proportional to t: 

( T , ,  - , )  = tJ(cx) (18) 
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Combining Eqs. (16) and (18) we get 

~ [ ai@ -- ajJileS(a) dKa= O (19) 

We now want to apply this result to the system discussed in Section 1. This 
requires that we reintroduce the K - 1 variables A ~ , A ~ (2A ~ is the 2 , . . .  
energy E used in the construction of the microcanonical ensemble.) The 
integral in Eq. (19) should be taken at constant A ~ (The microcanonical 
ensemble assumes that the numbers of all conserved particle species are 
fixed.) We shall now assume that the reservoir has a quadratic entropy 
function. (This puts no restrictions on the barrier, whose entropy is as- 
sumed to be negligible.) For a quadratic reservoir, constant A ~ is equivalent 
to constant ~. We may thus use the expansion given by Eq. (6) in (19): 

f [  (aiA/k - a:Aik)Afik + (aiBjk,m -- ajBik,, ~ )Aflkkf l ,  Afim]e s dKa = 0 (20) 

Making use of the facts that Afire s = OeS/Oak a n d  03S/OakOalOam = 0 we 
can, by two partial integrations, write Eq. (20) in the form 

f [ A i j - A j i + 3 ( B i j , m - B y m ) O z m ] e S ( " Y d K a = O  (21) 

where S ( a )  = S(O) - �89 %l%at .  This implies that 

Aij - Aji + 3( Botm - Bjilm )Olm = 0 (22) 

We now recall that the barrier coefficients A 0 and B~#~ are independent of 
the reservoir entropy function. If we were to replace the quadratic reservoir 
by another reservoir which, at the same value of /? had a quadratic 
expansion with coefficients Or'm, then Eq. (22) would remain valid with O~m 
replaced by O;m. Thus the terms in Eq. (22) must be separately zero: 

A~j = Aji (23) 

and 

Bok~ = Bjikt (24) 

Since, by its basic definition [Eq. (6)] B~k l is symmetric in the indices 
(j, k, l) the symmetry with respect to interchange of i a n d j  shows that BO~I 
is completely symmetric. Eq. (23) is the conventional Onsager relations for 
this system in the linear flow approximation. (,.3) 
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